CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells

CRISPR/Cas9 介导的人类原代 T 细胞中临床相关同种抗原的敲除

阅读:12
作者:Elahe Kamali, Fatemeh Rahbarizadeh, Zohreh Hojati, Morten Frödin

Background

The ability of CRISPR/Cas9 to mutate any desired genomic locus is being increasingly explored in the emerging area of cancer immunotherapy. In this respect, current efforts are mostly focused on the use of autologous (i.e. patient-derived) T cells. The autologous approach, however, has drawbacks in terms of manufacturing time, cost, feasibility and scalability that can affect therapeutic outcome or wider clinical application. The use of allogeneic T cells from healthy donors may overcome these limitations. For this strategy to work, the endogenous T cell receptor (TCR) needs to be knocked out in order to reduce off-tumor, graft-versus-host-disease (GvHD). Furthermore, CD52 may be knocked out in the donor T cells, since this leaves them resistant to the commonly used anti-CD52 monoclonal antibody lymphodepletion regimen aiming to suppress rejection of the infused T cells by the recipient. Despite the great prospect, genetic manipulation of human T cells remains challenging, in particular how to deliver the engineering reagents: virus-mediated delivery entails the inherent risk of altering cancer gene expression by the genomically integrated CRISPR/Cas9. This is avoided by delivery of CRISPR/Cas9 as ribonucleoproteins, which, however, are fragile and technically demanding to produce. Electroporation of CRISPR/Cas9 expression plasmids would bypass the above issues, as this approach is simple, the reagents are robust and easily produced and delivery is transient.

Conclusion

Our results demonstrate that genomic knockout by electroporation of plasmids encoding CRISPR/Cas9 is technically feasible in human primary T cells, albeit at low efficiency.

Results

Here, we tested knockout of either TCR or CD52 in human primary T cells, using electroporation of CRISPR/Cas9 plasmids. After validating the CRISPR/Cas9 constructs in human 293 T cells by Tracking of Indels by Decomposition (TIDE) and Indel Detection by Amplicon Analysis (IDAA) on-target genomic analysis, we evaluated their efficacy in primary T cells. Four days after electroporation with the constructs, genomic analysis revealed a knockout rate of 12-14% for the two genes, which translated into 7-8% of cells showing complete loss of surface expression of TCR and CD52 proteins, as determined by flow cytometry analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。