Implication of coronin 7 in body weight regulation in humans, mice and flies

冠蛋白 7 对人类、小鼠和苍蝇体重调节的影响

阅读:7
作者:Anders Eriksson, Michael J Williams, Sarah Voisin, Ida Hansson, Arunkumar Krishnan, Gaetan Philippot, Olga Yamskova, Florence M Herisson, Rohit Dnyansagar, George Moschonis, Yannis Manios, George P Chrousos, Pawel K Olszewski, Robert Frediksson, Helgi B Schiöth5

Background

Obesity is a growing global concern with strong associations with cardiovascular disease, cancer and type-2 diabetes. Although various genome-wide association studies have identified more than 40 genes associated with obesity, these genes cannot fully explain the heritability of obesity, suggesting there may be other contributing factors, including epigenetic effects.

Conclusion

We conclude that coronin 7 is involved in the regulation of energy homeostasis and this role stems, to some degree, from the effect on feeding for calories and reward.

Results

We performed genome wide DNA methylation profiling comparing normal-weight and obese 9-13 year old children to investigate possible epigenetic changes correlated with obesity. Of note, obese children had significantly lower methylation levels at a CpG site located near coronin 7 (CORO7), which encodes a tryptophan-aspartic acid dipeptide (WD)-repeat containing protein most likely involved in Golgi complex morphology and function. Anatomical profiling of coronin 7 (Coro7) mRNA expression in mice revealed that it is highly expressed in appetite and energy balance regulating regions, including the hypothalamus, striatum and locus coeruleus, the main noradrenergic brain site. Interestingly, we found that food deprivation in mice downregulates hypothalamic Coro7 mRNA levels, and injecting ethanol, an appetite stimulant, increased the number of Coro7 expressing cells in the locus coeruleus. Finally, by employing the genetically-tractable Drosophila melanogaster model we were able to demonstrate an evolutionarily conserved metabolic function for the CORO7 homologue pod1. Knocking down the pod1 in the Drosophila adult nervous system increased their resistance to starvation. Furthermore, feeding flies a high-calorie diet significantly increased pod1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。