Analysis of ssDNA gaps and DSBs in genetically unstable yeast cultures

遗传不稳定酵母培养物中 ssDNA 间隙和 DSB 的分析

阅读:5
作者:Jie Peng, M K Raghuraman, Wenyi Feng

Abstract

DNA replication defects are an underlying cause of genome instability, which could stem from alterations in replication intermediates such as extensive single-stranded DNA (ssDNA). Under replication stress, ssDNA is a precursor of the ultimate double-strand breaks (DSBs). Indeed, mutations that render the cell incapable of mediating and protecting the replication forks produce ssDNA genome-wide at high frequency and cause lethality when encountering DNA damage or replication perturbation. Here we describe two related microarray-based methods to query genetically unstable yeast cultures, such as the mec1 and rad53 mutants. These mutants are defective in central protein kinases in the checkpoint pathway. To induce ssDNA and DSB formation in these mutants, we utilize hydroxyurea, a drug that causes nucleotide shortage in the cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。