Salinity Effects on Morpho-Physiological and Yield Traits of Soybean (Glycine max L.) as Mediated by Foliar Spray with Brassinolide

叶面喷施芸苔素对盐分对大豆形态生理和产量性状的影响

阅读:8
作者:Victoria Otie, Idorenyin Udo, Yang Shao, Michael O Itam, Hideki Okamoto, Ping An, Egrinya A Eneji

Abstract

Salinity episodes that are common in arid regions, characterized by dryland, are adversely affecting crop production worldwide. This study evaluated the effectiveness of brassinolide (BL) in ameliorating salinity stress imposed on soybean at four levels (control (1.10), 32.40, 60.60 and 86.30 mM/L NaCl) in factorial combination with six BL application frequency (control (BL0), application at seedling (BL1), flowering (BL2), podding (BL3), seedling + flowering (BL4) and seedling + flowering + podding (BL5)) stages. Plant growth attributes, seed yield, and N, P, K, Ca and Mg partitioning to leaves, stems and roots, as well as protein and seed-N concentrations, were significantly (p ≤ 0.05) reduced by salinity stress. These trends were ascribed to considerable impairments in the photosynthetic pigments, photosynthetically active radiation, leaf stomatal conductance and relative water content in the leaves of seedlings under stress. The activity of peroxidase and superoxidase significantly (p ≤ 0.05) increased with salinity. Foliar spray with BL significantly (p ≤ 0.05) improved the photosynthetic attributes, as well as nutrient partitioning, under stress, and alleviated ion toxicity by maintaining a favourable K+/Na+ ratio and decreasing oxidative damage. Foliar spray with brassinolide could sustain soybean growth and seed yield at salt concentrations up to 60.60 mM/L NaCl.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。