Transcriptome Analysis Unveils That Exosomes Derived from M1-Polarized Microglia Induce Ferroptosis of Neuronal Cells

转录组分析揭示来自 M1 极化小胶质细胞的外泌体诱导神经元细胞铁死亡

阅读:6
作者:Sheng Gao, Shu Jia, Luyue Bai, Dongru Li, Chunyang Meng

Abstract

Microglia play a vital role in neurodegenerative diseases. However, the effects of microglia-derived exosomes on neuronal cells are poorly understood. This study aimed to explore the role of M1-polarized microglia exosomes in neuronal cells by transcriptome analysis. Exosomes isolated from resting M0-phenotype BV2 (M0-BV2) microglia and M1-polarized BV2 (M1-BV2) microglia were analyzed using high-throughput sequencing of the transcriptome. Differentially expressed genes (DEGs) between the two types of exosomes were identified by analyzing the sequencing data. The biological functions and pathways regulated by the identified DEGs were then identified using bioinformatics analyses. Finally, we evaluated the effects of exosomes on neuronal cells by coculturing M0-BV2 and M1-BV2 exosomes with primary neuronal cells. Enrichment analyses revealed that DEGs were significantly enriched in the ferroptosis pathway (p = 0.0137). M0-BV2 exosomes had no distinct effects on ferroptosis in neuronal cells, whereas M1-BV2 exosomes significantly reduced ferroptosis suppressor proteins (GPX4, SLC7A11, and FTH1) and elevated the levels of intracellular and mitochondrial ferrous iron and lipid peroxidation in neuronal cells. Polarized M1-BV2 microglia exosomes can induce ferroptosis in neuronal cells, thereby aggravating neuronal damage. Taken together, these findings enhance knowledge of the pathogenesis of neurological disorders and suggest potential therapeutic targets against neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。