Background
Arterial stiffness is an important predictor of cardiovascular events. Perindopril and physical exercise are important in controlling hypertension and arterial stiffness, but the mechanisms are unclear. (2)
Conclusions
Both perindopril and aerobic training reduced arterial stiffness in SHR; however, the results suggest that the mechanisms can be distinct. While treatment with perindopril increased EHD2, a protein involved in vessel relaxation, aerobic training decreased COL1 protein level, an important protein of the extracellular matrix (ECM) that normally enhances vessel rigidity.
Methods
Thirty-two spontaneously hypertensive rats (SHR) were evaluated for eight weeks: SHRC (sedentary); SHRP (sedentary treated with perindopril-3 mg/kg) and SHRT (trained). Pulse wave velocity (PWV) analysis was performed, and the aorta was collected for proteomic analysis. (3)
Results
Both treatments determined a similar reduction in PWV (-33% for SHRP and -23% for SHRT) vs. SHRC, as well as in BP. Among the altered proteins, the proteomic analysis identified an upregulation of the EH domain-containing 2 (EHD2) protein in the SHRP group, required for nitric oxide-dependent vessel relaxation. The SHRT group showed downregulation of collagen-1 (COL1). Accordingly, SHRP showed an increase (+69%) in the e-NOS protein level and SHRT showed a lower COL1 protein level (-46%) compared with SHRC. (4) Conclusions: Both perindopril and aerobic training reduced arterial stiffness in SHR; however, the results suggest that the mechanisms can be distinct. While treatment with perindopril increased EHD2, a protein involved in vessel relaxation, aerobic training decreased COL1 protein level, an important protein of the extracellular matrix (ECM) that normally enhances vessel rigidity.
