Influence of Pore Structure and Metal-Node Geometry on the Polymerization of Ethylene over Cr-Based Metal-Organic Frameworks

孔结构和金属节点几何形状对铬基金属有机骨架上乙烯聚合的影响

阅读:4
作者:Maarten K Jongkind, Miguel Rivera-Torrente, Nikolaos Nikolopoulos, Bert M Weckhuysen

Abstract

Metal-organic frameworks (MOFs) have received increasing interest as solid single-site catalysts, owing to their tunable pore architecture and metal node geometry. The ability to exploit these modulators makes them prominent candidates for producing polyethylene (PE) materials with narrow dispersity index (Ð) values. Here a study is presented in which the ethylene polymerization properties, with Et2 AlCl as activator, of three renowned Cr-based MOFs, MIL-101(Cr)-NDC (NDC=2,6-dicarboxynapthalene), MIL-53(Cr) and HKUST-1(Cr), are systematically investigated. Ethylene polymerization reactions revealed varying catalytic activities, with MIL-101(Cr)-NDC and MIL-53(Cr) being significantly more active than HKUST-1(Cr). Analysis of the PE products revealed large Ð values, demonstrating that polymerization occurs over a multitude of active Cr centers rather than a singular type of Cr site. Spectroscopic experiments, in the form of powder X-ray diffraction (pXRD), UV/Vis-NIR diffuse reflectance spectroscopy (DRS) and CO probe molecule Fourier transform infrared (FTIR) spectroscopy corroborated these findings, indicating that indeed for each MOF unique active sites are generated, however without alteration of the original oxidation state. Furthermore, the pXRD experiments indicated that one major prerequisite for catalytic activity was the degree of MOF activation by the Et2 AlCl co-catalyst, with the more active materials portraying a larger degree of activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。