HLA class I loss in metachronous metastases prevents continuous T cell recognition of mutated neoantigens in a human melanoma model

人类黑色素瘤模型中,异时性转移中的 HLA I 类丢失阻止 T 细胞持续识别突变的新抗原

阅读:6
作者:Barbara Schrörs, Silke Lübcke, Volker Lennerz, Martina Fatho, Anne Bicker, Catherine Wölfel, Patrick Derigs, Thomas Hankeln, Dirk Schadendorf, Annette Paschen, Thomas Wölfel

Abstract

T lymphocytes against tumor-specific mutated neoantigens can induce tumor regression. Also, the size of the immunogenic cancer mutanome is supposed to correlate with the clinical efficacy of checkpoint inhibition. Herein, we studied the susceptibility of tumor cell lines from lymph node metastases occurring in a melanoma patient over several years towards blood-derived, neoantigen-specific CD8+ T cells. In contrast to a cell line established during early stage III disease, all cell lines generated at later time points from stage IV metastases exhibited partial or complete loss of HLA class I expression. Whole exome and transcriptome sequencing of the four tumor lines and a germline control were applied to identify expressed somatic single nucleotide substitutions (SNS), insertions and deletions (indels). Candidate peptides encoded by these variants and predicted to bind to the patient's HLA class I alleles were synthesized and tested for recognition by autologous mixed lymphocyte-tumor cell cultures (MLTCs). Peptides from four mutated proteins, HERPUD1G161S, INSIG1S238F, MMS22LS437F and PRDM10S1050F, were recognized by MLTC responders and MLTC-derived T cell clones restricted by HLA-A*24:02 or HLA-B*15:01. Intracellular peptide processing was verified with transfectants. All four neoantigens could only be targeted on the cell line generated during early stage III disease. HLA loss variants of any kind were uniformly resistant. These findings corroborate that, although neoantigens represent attractive therapeutic targets, they also contribute to the process of cancer immunoediting as a serious limitation to specific T cell immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。