Co-inhibition of pol θ and HR genes efficiently synergize with cisplatin to suppress cisplatin-resistant lung cancer cells survival

polθ和HR基因的共同抑制与顺铂有效协同抑制顺铂耐药肺癌细胞的存活

阅读:9
作者:Chun-Hua Dai, Ping Chen, Jian Li, Tin Lan, Yong-Chang Chen, Hai Qian, Kang Chen, Mei-Yu Li

Abstract

Cisplatin exert its anticancer effect by creating intrastrand and interstrand DNA cross-links which block DNA replication and is a major drug used to treat lung cancer. However, the main obstacle of the efficacy of treatment is drug resistance. Here, we show that expression of translesion synthesis (TLS) polymerase Q (POLQ) was significantly elevated by exposure of lung cancer cells A549/DR (a cisplatin-resistant A549 cell line) to cisplatin. POLQ expression correlated inversely with homologous recombination (HR) activity. Co-depletion of BRCA2 and POLQ by siRNA markedly increased sensitivity of A549/DR cells to cisplatin, which was accompanied with impairment of double strand breaks (DSBs) repair reflected by prominent cell cycle checkpoint response, increased chromosomal aberrations and persistent colocalization of p-ATM and 53BP1 foci induced by cisplatin. Thus, co-knockdown of POLQ and HR can efficiently synergize with cisplatin to inhibit A549/DR cell survival by inhibiting DNA DSBs repair. Similar results were observed in A549/DR cells co-depleted of BRCA2 and POLQ following BMN673 (a PARP inhibitor) treatment. Importantly, the sensitization effects to cisplatin and BMN673 in A549/DR cells by co-depleting BRCA2 and POLQ was stronger than those by co-depleting BRCA2 and other TLS factors including POLH, REV3, or REV1. Our results indicate that there is a synthetic lethal relationship between pol θ-mediated DNA repair and HR pathways. Pol θ may be considered as a novel target for lung cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。