Conclusion
Zinc counteracts the deleterious effect of Cd by reducing its import and accumulation in the cell, without the reactivation of destructive pathways such as MMPs.
Methods
Cell/medium fractionation constants were analyzed for different metals by inductively-coupled-plasma mass-spectrometry by comparison to the 70Zn spike. Interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were used to mimic inflammation. Gene expression of ZIP-8 importer, metallothioneins-1 (MT-1s) and the ratio between metalloprotease-3 and the tissue inhibitor of metalloproteinases (MMP-3)/TIMP-1) were evaluated after pre-exposure to cytokines and Cd, with or without the addition of exogenous Zn (0.9 ppm). Cell viability was measured by neutral red assay and IL-6 production by ELISA.
Results
Synoviocytes selectively absorbed and retained Cd in comparison to Zn. Metal import increased with IL-17/TNF-α exposure, through the enhanced ZIP-8 expression. Zn did not modify ZIP-8 expression, while Cd reduced it (p<0.05). Zn induced a reduction of Cd-induced MT-1s expression, in particular of MT-1X (3-fold), and subsequently the final intra-cellular content of Cd. By reducing Cd accumulation in cells, Zn reversed Cd anti-proliferative and anti-inflammatory effects but preserved the low MMP-3/TIMP-1 ratio induced by Cd, which was enhanced by inflammatory conditions.
