Regulator of G-protein signaling 18 controls both platelet generation and function

蛋白信号调节器 18 控制血小板的生成和功能

阅读:6
作者:Nathalie Delesque-Touchard, Caroline Pendaries, Cécile Volle-Challier, Laurence Millet, Véronique Salel, Caroline Hervé, Anne-Marie Pflieger, Laurence Berthou-Soulie, Catherine Prades, Tania Sorg, Jean-Marc Herbert, Pierre Savi, Françoise Bono

Abstract

RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。