Encapsulation of Human Umbilical Cord Mesenchymal Stem Cells in LunaGel Photocrosslinkable Extracellular Matrix and Subcutaneous Transplantation in Mice

将人脐带间充质干细胞封装于 LunaGel 光交联细胞外基质中并进行小鼠皮下移植

阅读:6
作者:Truc Le-Buu Pham, Dang Phu-Hai Nguyen, Thao Thi-Thu Luu, Luong Si Nguyen, Nguyen Trong Binh, Quan Dang Nguyen, Phong Anh Tran

Abstract

Stem cells have significant potential in regenerative medicines. However, a major issue with implanting stem cells in the regeneration of new tissue is the methods to implant them and cell viability and functions before and after implantation. Here we developed a simple yet effective method that used photo-crosslinkable gelatin-based hydrogel (LunaGelTM) as a scaffold for the encapsulation, expansion, and eventually, transplantation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) into mice subcutaneously. We demonstrated the proliferation and maintenance of the original expression of mesenchymal stem cell markers as well as the ability to differentiate into mesoderm-derived cells. The hydrogel was highly stable with no signs of degradation after 20 days in PBS. The hUC-MSCs remained viable after transplantation into mice's subcutaneous pockets and migrated to integrate with the surrounding tissues. We showed a collagen-rich layer surrounding the transplanted cell-laden scaffold indicating the effects of growth factors secreted by the hUC-MSCs. A connective tissue layer was found between the implanted cell-laden scaffold and the collagen layer, and immunohistochemical staining results suggested that this tissue was derived from the MSCs which migrated from within the scaffold. The results, thus, also suggested a protective effect the scaffold has on the encapsulated cells from the antibodies and cytotoxic cells of the host immune system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。