Soft Scorpionate Hydridotris(2-mercapto-1-methylimidazolyl) borate) Tungsten-Oxido and -Sulfido Complexes as Acetylene Hydratase Models

软蝎酸氢化三(2-巯基-1-甲基咪唑)硼酸盐)钨-氧化物和-硫化合物复合物作为乙炔水合酶模型

阅读:4
作者:Carina Vidovič, Ferdinand Belaj, Nadia C Mösch-Zanetti

Abstract

A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(μ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (μ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。