Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control

下丘脑外侧的酸敏感离子通道 1 有助于呼吸控制

阅读:9
作者:Nana Song, Guihong Zhang, Wenye Geng, Zibing Liu, Weizhong Jin, Li Li, Yinxiang Cao, Danian Zhu, Jerry Yu, Linlin Shen

Abstract

Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。