Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H2O2 and TRPV4-Dependent Activation of BKca Channels

创伤性脑损伤损害脑动脉的肌源性收缩:线粒体衍生的 H2O2 和 TRPV4 依赖的 BKca 通道激活的作用

阅读:7
作者:Nikolett Szarka, Mallikarjuna R Pabbidi, Krisztina Amrein, Endre Czeiter, Gergely Berta, Krisztina Pohoczky, Zsuzsanna Helyes, Zoltan Ungvari, Akos Koller, Andras Buki, Peter Toth

Abstract

Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived H2O2 and large-conductance calcium-activated potassium channels (BKCa) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. We found that 24 h post-TBI MCAs exhibited impaired myogenic constriction, which was restored by treatment with a mitochondria-targeted antioxidant (mitoTEMPO), by scavenging of H2O2 (polyethylene glycol [PEG]-catalase) and by blocking both BKCa channels (paxilline) and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels (HC 067047). Further, exogenous administration of H2O2 elicited significant dilation of MCAs, which was inhibited by blocking either BKCa or TRPV4 channels. Vasodilation induced by the TRPV4 agonist GSK1016790A was inhibited by paxilline. In cultured vascular smooth muscle cells H2O2 activated BKCa currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived H2O2 activates BKCa channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。