Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model

VEGF165 从胶原基质中释放的动力学和循环模型中的结构基质变化

阅读:4
作者:Johannes Kleinheinz, Susanne Jung, Kai Wermker, Carsten Fischer, Ulrich Joos

Background

Current approaches in bone regeneration combine osteoconductive scaffolds with bioactive cytokines like BMP or VEGF. The idea of our in-vitro trial was to apply VEGF165 in gradient concentrations to an equine collagen carrier and to study pharmacological and morphological characteristics of the complex in a circulation model.

Conclusions

By defining the pharmacological and morphological profile of a cytokine collagen complex in a circulation model our data paves the way for further in-vivo studies where additional biological side effects will have to be considered. VEGF165 linked to collagen fibrils shows its improved stability in direct electron microscopic imaging as well as in prolonged release from the matrix. Our in-vitro trial substantiates the position of cytokine collagen complexes as innovative and effective treatment tools in regenerative medicine and and may initiate further clinical research.

Methods

Release kinetics of VEGF165 complexed in different quantities in a collagen matrix were determined in a circulation model by quantifying protein concentration with ELISA over a period of 5 days. The structural changes of the collagen matrix were assessed with light microscopy, native scanning electron microscopy (SEM) as well as with immuno-gold-labelling technique in scanning and transmission electron microscopy (TEM).

Results

We established a biological half-life for VEGF165 of 90 minutes. In a half-logarithmic presentation the VEGF165 release showed a linear declining gradient; the release kinetics were not depending on VEGF165 concentrations. After 12 hours VEGF release reached a plateau, after 48 hours VEGF165 was no longer detectable in the complexes charged with lower doses, but still measurable in the 80 microg sample. At the beginning of the study a smear layer was visible on the surface of the complex. After the wash out of the protein in the first days the natural structure of the collagen appeared and did not change over the test period. Conclusions: By defining the pharmacological and morphological profile of a cytokine collagen complex in a circulation model our data paves the way for further in-vivo studies where additional biological side effects will have to be considered. VEGF165 linked to collagen fibrils shows its improved stability in direct electron microscopic imaging as well as in prolonged release from the matrix. Our in-vitro trial substantiates the position of cytokine collagen complexes as innovative and effective treatment tools in regenerative medicine and and may initiate further clinical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。