LncRNA Taurine Up-Regulated 1 Knockout Provides Neuroprotection in Ischemic Stroke Rats by Inhibiting Nuclear-Cytoplasmic Shuttling of HuR

LncRNA 牛磺酸上调 1 基因敲除通过抑制 HuR 的核质穿梭为缺血性中风大鼠提供神经保护

阅读:7
作者:Xiaocheng Shi, Sha Liu, Yichun Zou, Hengping Wu, Jinyang Ma, Junbin Lin, Xin Zhang

Background

Long non-coding RNA taurine-upregulated gene 1 (TUG1) is involved in various cellular processes, but its role in cerebral ischemia-reperfusion injury remains unclear. This study investigated TUG1's role in regulating the nucleocytoplasmic shuttling of human antigen R (HuR), a key apoptosis regulator under ischemic conditions.

Conclusions

TUG1 knockout reduces ischemic damage and neuronal apoptosis by inhibiting HuR nucleocytoplasmic shuttling, making TUG1 a potential therapeutic target for ischemic stroke.

Methods

CRISPR-Cas9 technology was used to generate TUG1 knockout Sprague Dawley rats to assess TUG1's impact on ischemic injury. The infarct area and neuronal apoptosis were evaluated using TUNEL, hematoxylin and eosin (HE), and TTC staining, while behavioral functions were assessed. Immunofluorescence staining with confocal microscopy was employed to examine TUG1-mediated HuR translocation and expression changes in the apoptosis-related proteins COX-2 and Bax.

Results

TUG1 knockout rats showed significantly reduced cerebral infarct areas, decreased neuronal apoptosis, and improved neurological functions compared to controls. Immunofluorescence staining revealed that HuR translocation from the nucleus to the cytoplasm was inhibited, leading to decreased COX-2 and Bax expression levels. Conclusions: TUG1 knockout reduces ischemic damage and neuronal apoptosis by inhibiting HuR nucleocytoplasmic shuttling, making TUG1 a potential therapeutic target for ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。