Tracking single fluorescent particles in three dimensions via extremum seeking

通过极值搜索在三维空间中跟踪单个荧光粒子

阅读:5
作者:Trevor T Ashley, Eric L Gan, Jane Pan, Sean B Andersson

Abstract

The ability to track single fluorescent particles in three-dimensions with sub-diffraction limit precision as well as sub-millisecond temporal resolution has enabled the understanding of many biophysical phenomena at the nanometer scale. While there are several techniques for achieving this, most require complicated experimental setups that are expensive to implement. These methods can offer superb performance but their complexity may be overwhelming to the end-user whose aim is only to understand the feature being imaged. In this work, we describe a method for tracking a single fluorescent particle using a standard confocal or multi-photon microscope configuration. It relies only on the assumption that the relative position of the measurement point and the particle can be actuated and that the point spread function has a global maximum that coincides with the particle's position. The method uses intensity feedback to calculate real-time position commands that "seek" the extremum of the point spread function as the particle moves through its environment. We demonstrate the method by tracking a diffusing quantum dot in a hydrogel on a standard epifluorescent confocal microscope.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。