The N-reductive system composed of mitochondrial amidoxime reducing component (mARC), cytochrome b5 (CYB5B) and cytochrome b5 reductase (CYB5R) is regulated by fasting and high fat diet in mice

小鼠禁食和高脂饮食对线粒体偕胺肟还原成分 (mARC)、细胞色素 b5 (CYB5B) 和细胞色素 b5 还原酶 (CYB5R) 组成的 N 还原系统进行调节

阅读:5
作者:Heyka H Jakobs, Michal Mikula, Antje Havemeyer, Adriana Strzalkowska, Monika Borowa-Chmielak, Artur Dzwonek, Marta Gajewska, Ewa E Hennig, Jerzy Ostrowski, Bernd Clement

Abstract

The mitochondrial amidoxime reducing component mARC is the fourth mammalian molybdenum enzyme. The protein is capable of reducing N-oxygenated structures, but requires cytochrome b5 and cytochrome b5 reductase for electron transfer to catalyze such reactions. It is well accepted that the enzyme is involved in N-reductive drug metabolism such as the activation of amidoxime prodrugs. However, the endogenous function of the protein is not fully understood. Among other functions, an involvement in lipogenesis is discussed. To study the potential involvement of the protein in energy metabolism, we tested whether the mARC protein and its partners are regulated due to fasting and high fat diet in mice. We used qRT-PCR for expression studies, Western Blot analysis to study protein levels and an N-reductive biotransformation assay to gain activity data. Indeed all proteins of the N-reductive system are regulated by fasting and its activity decreases. To study the potential impact of these changes on prodrug activation in vivo, another mice experiment was conducted. Model compound benzamidoxime was injected to mice that underwent fasting and the resulting metabolite of the N-reductive reaction, benzamidine, was determined. Albeit altered in vitro activity, no changes in the metabolite concentration in vivo were detectable and we can dispel concerns that fasting alters prodrug activation in animal models. With respect to high fat diet, changes in the mARC proteins occur that result in increased N-reductive activity. With this study we provide further evidence that the endogenous function of the mARC protein is linked with lipid metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。