Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue

生成一种可识别缬氨酸残基的 α-酰胺化异构体的新型单克隆抗体

阅读:5
作者:Benito Antón Palma, Philippe Leff Gelman, Mayra Medecigo Ríos, Juan Carlos Calva Nieves, Rodolfo Acevedo Ortuño, Maura Epifanía Matus Ortega, Jorge Alberto Hernández Calderón, Ricardo Hernández Miramontes, Anabel Flores Zamora, Alberto Salazar Juárez1

Background

Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species.

Conclusions

Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.

Methods

The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (-CONH2) and free α-carboxylic acid (-COO(-)) isovariant of the valine residue.

Results

P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Conclusions: Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。