Two-step cross-linking for analysis of protein-chromatin interactions

两步交联用于分析蛋白质-染色质相互作用

阅读:5
作者:Bing Tian, Jun Yang, Allan R Brasier

Abstract

Eukaryotic gene regulation is controlled, in part, by inducible transcription factor-binding regulatory sequences in a tissue-specific and hormone-responsive manner. The development of methods for the analysis of transcription factor interaction within native chromatin has been a significant advance for the systematic analyses of the timing of gene regulation and studies on the effects of chromatin modifying enzymes on promoter accessibility. Chromatin immunoprecipitation (ChIP) is a specific method involving formaldehyde mediated protein-chromatin fixation to preserve the interaction for subsequent target identification. However, the conventional single-step cross-linking technique does not preserve all protein-DNA interactions, especially for transcription factors in hyper-dynamic equilibrium with chromatin or for coactivator interactions. Here, we describe a versatile, efficient "two-step" XChIP method that involves sequential protein-protein fixation followed by protein-DNA fixation. This method has been used successfully for analysis of chromatin binding for transcription factors (NF-κB, STAT3), polymerases (RNA Pol II), coactivators (CBP/p300, CDK9), and chromatin structural proteins (modified histones). Modifications of DNA extraction and sonication suitable for downstream target identification by quantitative genomic PCR and next generation sequencing are described.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。