Cell-cycle arrest at the G1/S boundary enhances transient voltage-gated ion channel expression in human and insect cells

G1/S 边界处的细胞周期停滞增强了人类和昆虫细胞中的瞬时电压门控离子通道表达

阅读:5
作者:Ahmed Eltokhi, William A Catterall, Tamer M Gamal El-Din

Abstract

Heterologous expression of recombinant ion channel subunits in cell lines is often limited by the presence of a low number of channels at the cell surface level. Here, we introduce a combination of two techniques: viral expression using the baculovirus system plus cell-cycle arrest at the G1/S boundary using either thymidine or hydroxyurea. This method achieved a manifold increase in the peak current density of expressed ion channels compared with the classical liposome-mediated transfection methods. The enhanced ionic current was accompanied by an increase in the density of gating charges, confirming that the increased yield of protein and ionic current reflects the functional localization of channels in the plasma membrane. This modified method of viral expression coordinated with the cell cycle arrest will pave the way to better decipher the structure and function of ion channels and their association with ion channelopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。