The Effect of the Sodium-Glucose Cotransporter Inhibitor on Cognition and Metabolic Parameters in a Rat Model of Sporadic Alzheimer's Disease

钠-葡萄糖协同转运蛋白抑制剂对散发性阿尔茨海默病大鼠模型认知和代谢参数的影响

阅读:4
作者:Jelena Osmanović Barilar, Ana Babić Perhoč, Ana Knezović, Jan Homolak, Davor Virag, Melita Šalković-Petrišić

Abstract

Type 2 diabetes mellitus increases the risk of sporadic Alzheimer's disease (sAD), and antidiabetic drugs, including the sodium-glucose cotransporter inhibitors (SGLTI), are being studied as possible sAD therapy. We have explored whether the SGLTI phloridzin may influence metabolic and cognitive parameters in a rat model of sAD. Adult male Wistar rats were randomized to a control (CTR), an sAD-model group induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg), a CTR+SGLTI, or an STZ-icv+SGLTI group. Two-month-long oral (gavage) SGLTI treatment (10 mg/kg) was initiated 1 month after STZ-icv and cognitive performance tested prior to sacrifice. SGLTI treatment significantly decreased plasma glucose levels only in the CTR group and failed to correct STZ-icv-induced cognitive deficit. In both the CTR and STZ-icv groups, SGLTI treatment diminished weight gain, decreased amyloid beta (Aβ) 1-42 in duodenum, and decreased the plasma levels of total glucagon-like peptide 1 (GLP-1), while the levels of active GLP-1, as well as both total and active glucose-dependent insulinotropic polypeptide, remained unchanged, compared to their respective controls. The increment in GLP-1 levels in the cerebrospinal fluid and its effect on Aβ 1-42 in duodenum could be one of the molecular mechanisms by which SGLTIs indirectly induce pleiotropic beneficial effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。