Intervening in Symbiotic Cross-Kingdom Biofilm Interactions: a Binding Mechanism-Based Nonmicrobicidal Approach

干预共生跨界生物膜相互作用:基于结合机制的非杀菌方法

阅读:6
作者:H E Kim #, A Dhall #, Y Liu, M Bawazir, H Koo, G Hwang

Abstract

Early childhood caries is a severe oral disease that results in aggressive tooth decay. Particularly, a synergistic association between a fungus, Candida albicans, and a cariogenic bacterium, Streptococcus mutans, promotes the development of hard-to-remove and highly acidic biofilms, exacerbating the virulent damage. These interactions are largely mediated via glucosyltransferases (GtfB) binding to mannans on the cell wall of C. albicans Here, we present an enzymatic approach to target GtfB-mannan interactions in this cross-kingdom consortium using mannan-degrading exo- and endo-enzymes. These exo- and endo-enzymes are highly effective in reducing biofilm biomass without killing microorganisms, as well as alleviating the production of an acidic pH environment conducive to tooth decay. To corroborate these results, we present biophysical evidence using single-molecule atomic force microscopy, biofilm shearing, and enamel surface topography analyses. Data show a drastic decrease in binding forces of GtfB to C. albicans (∼15-fold reduction) following enzyme treatment. Furthermore, enzymatic activity disrupted biofilm mechanical stability and significantly reduced human tooth enamel demineralization without cytotoxic effects on gingival keratinocytes. Our results represent significant progress toward a novel nonbiocidal therapeutic intervention against pathogenic bacterial-fungal biofilms by targeting the interkingdom receptor-ligand binding interactions.IMPORTANCE Biofilm formation is a key virulence factor responsible for various infectious diseases. Particularly, interactions between a fungus, Candida albicans, and a bacterium, Streptococcus mutans, have been known to play important roles in the pathogenesis of dental caries. Although some antimicrobials have been applied to treat fungal-involved biofilm-associated diseases, these often lack targeting polymicrobial interactions. Furthermore, these may not be appropriate for preventive measures because these antimicrobials may disrupt ecological microbiota and/or induce the prevalence of drug resistance over time. By specifically targeting the interaction mechanism whereby mannoproteins on the C. albicans surface mediate the cross-kingdom interaction, we demonstrated that mannoprotein-degrading enzymes can effectively disrupt biofilm interactions without microbiocidal effects or causing cytotoxicity to human cells. This suggests a potential application as a targeted approach for intervening a pathogenic cross-kingdom biofilm associated with a costly and unresolved oral disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。