An epitope-specific chemically defined nanoparticle vaccine for respiratory syncytial virus

针对呼吸道合胞病毒表位特异性化学定义的纳米颗粒疫苗

阅读:5
作者:Armando Zuniga, Oliver Rassek, Melissa Vrohlings, Aniebrys Marrero-Nodarse, Kerstin Moehle, John A Robinson, Arin Ghasparian

Abstract

Respiratory syncytial virus (RSV) can cause severe respiratory disease in humans, particularly in infants and the elderly. However, attempts to develop a safe and effective vaccine have so far been unsuccessful. Atomic-level structures of epitopes targeted by RSV-neutralizing antibodies are now known, including that bound by Motavizumab and its clinically used progenitor Palivizumab. We developed a chemically defined approach to RSV vaccine design, that allows control of both immunogenicity and safety features of the vaccine. Structure-guided antigen design and a synthetic nanoparticle delivery platform led to a vaccine candidate that elicits high titers of palivizumab-like, epitope-specific neutralizing antibodies. The vaccine protects preclinical animal models from RSV infection and lung pathology typical of vaccine-derived disease enhancement. The results suggest that the development of a safe and effective synthetic epitope-specific RSV vaccine may be feasible by combining this conformationally stabilized peptide and synthetic nanoparticle delivery system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。