Mycobacterium tuberculosis Transcription Factor EmbR Regulates the Expression of Key Virulence Factors That Aid in Ex Vivo and In Vivo Survival

结核分枝杆菌转录因子 EmbR 调节有助于体外和体内存活的关键毒力因子的表达

阅读:9
作者:Suresh Kumar, Mehak Zahoor Khan, Neha Khandelwal, Chen Chongtham, Biplab Singha, Ankita Dabla, Debashree Behera, Archana Singh, Balasubramanian Gopal, G Aneeshkumar Arimbasseri, Siddhesh S Kamat, Vinay Kumar Nandicoori

Abstract

Mycobacterium tuberculosis encodes ~200 transcription factors that modulate gene expression under different microenvironments in the host. Even though high-throughput chromatin immunoprecipitation sequencing and transcriptome sequencing (RNA-seq) studies have identified the regulatory network for ~80% of transcription factors, many transcription factors remain uncharacterized. EmbR is one such transcription factor whose in vivo regulon and biological function are yet to be elucidated. Previous in vitro studies suggested that phosphorylation of EmbR by PknH upregulates the embCAB operon. Using a gene replacement mutant of embR, we investigated its role in modulating cellular morphology, antibiotic resistance, and survival in the host. Contrary to the prevailing hypothesis, under normal growth conditions, EmbR is neither phosphorylated nor impacted by ethambutol resistance through the regulation of the embCAB operon. The embR deletion mutant displayed attenuated M. tuberculosis survival in vivo. RNA-seq analysis suggested that EmbR regulates operons involved in the secretion pathway, lipid metabolism, virulence, and hypoxia, including well-known hypoxia-inducible genes devS and hspX. Lipidome analysis revealed that EmbR modulates levels of all lysophospholipids, several phospholipids, and M. tuberculosis-specific lipids, which is more pronounced under hypoxic conditions. We found that the EmbR mutant is hypersusceptible to hypoxic stress, and RNA sequencing performed under hypoxic conditions indicated that EmbR majorly regulates genes involved in response to acidic pH, hypoxia, and fatty acid metabolism. We observed condition-specific phosphorylation of EmbR, which contributes to EmbR-mediated transcription of several essential genes, ensuring enhanced survival. Collectively, the study establishes EmbR as a key modulator of hypoxic response that facilitates mycobacterial survival in the host. IMPORTANCE Mycobacterium tuberculosis modulates its transcriptional machinery in response to dynamic microenvironments encountered within the host. In this study, we identified that EmbR, a transcription factor, plays important roles in modulating cellular morphology, antibiotic resistance, and survival in the host. We found that EmbR undergoes condition-specific phosphorylation for its activation. Together, the study establishes a key role of EmbR as a transcriptional activator of genes belonging to multiple pathways, viz., virulence, secretion, or polyketide synthesis, that aid in mycobacterial survival during hypoxia and within the host.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。