Exosomal MicroRNAs in Military Personnel with Mild Traumatic Brain Injury: Preliminary Results from the Chronic Effects of Neurotrauma Consortium Biomarker Discovery Project

轻度创伤性脑损伤军事人员的外泌体微小 RNA:神经创伤联盟生物标志物发现项目的慢性影响的初步结果

阅读:6
作者:Christina Devoto, Chen Lai, Bao-Xi Qu, Vivian A Guedes, Jacqueline Leete, Elisabeth Wilde, William C Walker, Ramon Diaz-Arrastia, Kimbra Kenney, Jessica Gill

Abstract

Chronic symptoms after mild traumatic brain injury (mTBI) are common among veterans and service members, and represent a significant source of morbidity, with those who sustain multiple mTBIs at greatest risk. Exosomal micro-RNAs (miRNAs), mediators of intercellular communication, may be involved in chronic TBI symptom persistence. Exosomal miRNA (exomiR) was extracted from 153 participants enrolled in the Chronic Effect of Neurotrauma Consortium (CENC) longitudinal study (no TBI, n = 35; ≥ 3 mTBIs (rTBI), n = 45; 1-2 mTBIs, n = 73). Analyses were performed with nCounter® Human miRNA Expression Panels and Ingenuity Pathway Analysis (IPA) for identification of gene networks associated with TBI. Generalized linear models were used to analyze the predictive value of exomiR dysregulation and remote neurobehavioral symptoms. Compared with controls, there were 17 dysregulated exomiRs in the entire mTBI group and 32 dysregulated exomiRs in the rTBI group. Two miRNAs, hsa-miR-139-5p and hsa-miR-18a-5p, were significantly differentially expressed in the rTBI and 1-2 mTBI groups. IPA analyses showed that these dysregulated exomiRs correlated with pathways of inflammatory regulation, neurological disease, and cell development. Within the rTBI group, exomiRs correlated with gene activity for hub-genes of tumor protein TP53, insulin-like growth factor 1 receptor, and transforming growth factor beta. TBI history and neurobehavioral symptom survey scores negatively and significantly correlated with hsa-miR-103a-3p expression. Participants with remote mTBI have distinct exomiR profiles, which are significantly linked to inflammatory and neuronal repair pathways. These profiles suggest that analysis of exosomal miRNA expression may provide novel insights into the underlying pathobiology of chronic TBI symptom persistence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。