Calcium electroporation induces stress response through upregulation of HSP27, HSP70, aspartate β-hydroxylase, and CD133 in human colon cancer cells

钙电穿孔通过上调人类结肠癌细胞中的 HSP27、HSP70、天冬氨酸 β-羟化酶和 CD133 来诱导应激反应

阅读:11
作者:Anna Szewczyk, Nina Rembiałkowska, Jolanta Saczko, Małgorzata Daczewska, Vitalij Novickij, Julita Kulbacka

Background

Electroporation (EP) leverages electric pulses to permeabilize cell membranes, enabling the delivery of therapeutic agents like calcium in cancer treatment. Calcium electroporation (CaEP) induces a rapid influx of calcium ions, disrupting cellular calcium homeostasis and triggering cell death pathways. This study aims to compare the cellular responses between microsecond (µsEP) and nanosecond (nsEP) electroporation, particularly in terms of oxidative stress, immune response activation, and cancer stem cell (CSC) viability in drug-resistant (LoVo Dx) and non-resistant (LoVo) colorectal cancer cell lines.

Conclusions

The study confirms that nsEP is more effective than µsEP in disrupting cancer cell viability, enhancing oxidative stress, and triggering immune responses, likely through HSP overexpression and ROS generation. nsEP also appears to reduce CSC viability, offering a promising therapeutic approach. However, preserving CD133 expression in the presence of calcium suggests complex interactions that require further investigation. These findings highlight the potential of nsCaEP as an innovative strategy for targeting both cancer cells and CSCs, potentially improving treatment outcomes in colorectal cancer. Further studies are needed to explore the exact cell death mechanisms and optimize protocols for clinical applications.

Results

Both µsEP and nsEP, particularly when combined with Ca2+, significantly reduced the viability of cancer cells, with nsEP showing greater efficacy. Reactive oxygen species (ROS) levels increased 5-fold in malignant cells following nsEP, correlating with decreased ATP production and mitochondrial dysfunction. Nanosecond CaEP (nsCaEP) also induced significant expression of aspartate-β-hydroxylase (ASPH), a protein linked to calcium homeostasis and tumor progression. Moreover, nsEP led to heightened expression of heat shock proteins (HSP27/70), indicating potential immune activation. Interestingly, nsEP without calcium drastically reduced the expression of CD133, a marker for CSCs, while the addition of Ca2+ preserved CD133 expression. The expression of death effector domain-containing DNA binding protein (DEDD), associated with apoptosis, was significantly elevated in treated cancer cells, especially in the nucleus after nsCaEP. Conclusions: The study confirms that nsEP is more effective than µsEP in disrupting cancer cell viability, enhancing oxidative stress, and triggering immune responses, likely through HSP overexpression and ROS generation. nsEP also appears to reduce CSC viability, offering a promising therapeutic approach. However, preserving CD133 expression in the presence of calcium suggests complex interactions that require further investigation. These findings highlight the potential of nsCaEP as an innovative strategy for targeting both cancer cells and CSCs, potentially improving treatment outcomes in colorectal cancer. Further studies are needed to explore the exact cell death mechanisms and optimize protocols for clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。