Cellular and molecular characterization of peripheral glia in the lung and other organs

肺和其他器官外周胶质细胞的细胞和分子特征

阅读:7
作者:Shaina Hall, Shixuan Liu, Irene Liang, Shawn Schulz, Camille Ezran, Mingqian Tan, Christin S Kuo

Abstract

Peripheral glia are important regulators of diverse physiologic functions yet their molecular distinctions and locations in almost all visceral organs are not well-understood. We performed a systematic analysis of peripheral glia, focusing on the lung and leveraging single cell RNA sequencing (scRNA-seq) analysis to characterize their cellular and molecular features. Using in vivo lineage studies, we characterized the anatomic, cellular, and molecular features of the Sox10+ glial lineage of the mouse lung. Using high-resolution imaging, we quantified the distribution and cellular morphologies of myelinating, non-myelinating, satellite, and terminal glial cells with their intricate extensions along peripheral nerves, including terminals at specialized neurosensory structures within the lung. Spatial analysis of selectively expressed myelinating (periaxin/Prx, claudin 19/Cldn) or non-myelinating (sodium channel/Scn7a) glial cell genes identified by scRNA-seq analysis revealed molecularly distinct populations surrounding myelinated nerve fibers in the lung. To extend this analysis to primates and other organs, we extracted rare peripheral glial cells in whole organism scRNA-seq atlases of mouse lemur and human. Our cross-species data analysis and integration of scRNA-seq data of ~700 peripheral glial cells from mouse, mouse lemur, and human glial cells identified conserved gene expression of molecularly distinct peripheral glial cell populations. This foundational knowledge facilitates subsequent functional studies targeting molecularly distinct subsets of peripheral glia and integrating them into organ-specific disorders of autonomic dysregulation. In addition, our cross-species analysis identifying conserved gene expression patterns and glial networks in extrapulmonary organs provides a valuable resource for studying the functional role of peripheral glia in multiorgan human diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。