Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis

CCL21 和 CCR7 通路在类风湿关节炎血管生成中的作用

阅读:6
作者:Sarah R Pickens, Nathan D Chamberlain, Michael V Volin, Richard M Pope, Nicholas E Talarico, Arthur M Mandelin 2nd, Shiva Shahrara

Conclusion

Angiogenesis is dependent on endothelial cell activation, migration, and proliferation, and inhibition of angiogenesis may provide a novel therapeutic approach in RA. This study identified a novel function of CCL21 as a mediator of RA angiogenesis, supporting CCL21/CCR7 as a therapeutic target in RA.

Methods

Histologic studies were performed to compare the expression of CCR7 and CCL21 in RA synovial tissue. Next, the role of CCL21 and/or CCR7 in angiogenesis was examined using in vitro chemotaxis, tube formation, and in vivo Matrigel plug assays. Finally, the mechanism by which CCL21 mediates angiogenesis was determined by Western blot analysis and endothelial cell chemotaxis and tube formation assays.

Objective

To determine the role of CCL21 and its receptor CCR7 in the pathogenesis of rheumatoid arthritis (RA).

Results

CCL21, but not CCL19, at concentrations present in the RA joint, induced human microvascular endothelial cell (HMVEC) migration that was mediated through CCR7 ligation. Suppression of the phosphatidylinositol 3-kinase pathway markedly reduced CCL21-induced HMVEC chemotaxis and tube formation; however, suppression of the ERK and JNK pathways had no effect on these processes. Neutralization of either CCL21 in RA synovial fluid or CCR7 in HMVECs significantly reduced the induction of HMVEC migration and/or tube formation by RA synovial fluid. We further demonstrated that CCL21 is angiogenic, by showing its ability to promote blood vessel growth in Matrigel plugs in vivo at concentrations that are present in RA joints.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。