ROS-stimulated protein lysine acetylation is required for crown root development in rice

ROS 刺激的蛋白质赖氨酸乙酰化是水稻冠根发育所必需的

阅读:6
作者:Qiutao Xu, Yijie Wang, Zhengting Chen, Yaping Yue, Honglin Huang, Baoguo Wu, Yuan Liu, Dao-Xiu Zhou, Yu Zhao

Conclusion

WOX11-controlled ROS level in CR meristem cells is required for protein lysine acetylation which represents a mechanism of ROS-promoted CR development in rice.

Methods

First, proteomic analysis was used to find candidate proteins responsible for the decrease of ROS detected in the wox11 mutant. Then, biochemical, molecular, and genetic analyses were used to study WOX11-regulated genes involved in ROS homeostasis. Finally, acetylproteomic analysis of wild type and wox11 roots treated with or without potassium iodide (KI) and hydrogen peroxide (H2O2) was used to study the effects of ROS on protein acetylation in rice CR cells.

Results

We demonstrated that WOX11 was required to maintain ROS homeostasis by upregulating peroxidase genes in the crown root meristem. Acetylproteomic analysis revealed that WOX11-dependent hydrogen peroxide (H2O2) levels in CR cells promoted lysine acetylation of many non-histone proteins enriched for nitrogen metabolism and peptide/protein synthesis pathways. Further analysis revealed that the redox state affected histone deacetylases (HDACs) activity, which was likely related to the high levels of protein lysine acetylation in CR cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。