Omics Profiles of Non-transgenic Scion Grafted on Transgenic RdDM Rootstock

嫁接在转基因 RdDM 砧木上的非转基因接穗的组学特征

阅读:6
作者:Hiroaki Kodama, Yukiko Umeyama, Taira Miyahara, Taichi Oguchi, Takashi Tsujimoto, Yoshihiro Ozeki, Takumi Ogawa, Yube Yamaguchi, Daisaku Ohta

Abstract

Grafting of commercial varieties onto transgenic stress-tolerant rootstocks is attractive approach, because fruit from the non-transgenic plant body does not contain foreign genes. RNA silencing can modulate gene expression and protect host plants from viruses and insects, and small RNAs (sRNAs), key molecules of RNA silencing, can move systemically. Here, to evaluate the safety of foods obtained from sRNA-recipient plant bodies, we investigated the effects of rootstock-derived sRNAs involved in mediating RNA-directed DNA methylation (RdDM) on non-transgenic scions. We used tobacco rootstocks showing RdDM against the cauliflower mosaic virus (CaMV) 35S promoter. When scions harboring CaMV 35S promoter sequence were grafted onto RdDM-inducing rootstocks, we found that RdDM-inducing sRNAs were only weakly transported from the rootstocks to the scion, and we observed a low level of DNA methylation of the CaMV 35S promoter in the scion. Next, wild-type (WT) tobacco scions were grafted onto RdDM-inducing rootstocks (designated NT) or WT rootstocks (designated NN), and scion leaves were subjected to multi-omics analyses. Our transcriptomic analysis detected 55 differentially expressed genes between the NT and NN samples. A principal component analysis of proteome profiles showed no significant differences. In the positive and negative modes of LC-ESI-MS and GC-EI-MS analyses, we found a large overlap between the metabolomic clusters of the NT and NN samples. In contrast, the negative mode of a LC-ESI-MS analysis showed separation of clusters of NT and NN metabolites, and we detected 6 peak groups that significantly differed. In conclusion, we found that grafting onto RdDM-inducing rootstocks caused a low-level transmission of sRNAs, resulting in limited DNA methylation in the scion. However, the causal relationships between sRNA transmission and the very slight changes in the transcriptomic and metabolomic profiles of the scions remains unclear. The safety assessment points for grafting with RdDM rootstocks are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。