Engineered single-domain antibodies with high protease resistance and thermal stability

具有高蛋白酶抗性和热稳定性的工程单域抗体

阅读:13
作者:Greg Hussack, Tomoko Hirama, Wen Ding, Roger Mackenzie, Jamshid Tanha

Abstract

The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (V(H)Hs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant V(H)Hs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant V(H)H pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the V(H)Hs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant V(H)H trypsin resistance was similar to that of wild-type V(H)Hs, although the trypsin resistance of one V(H)H mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases V(H)H thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase V(H)H stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。