Stress-Dependent Changes in the CacyBP/SIP Interacting Protein S100A6 in the Mouse Brain

小鼠脑内 CacyBP/SIP 相互作用蛋白 S100A6 的应激依赖性变化

阅读:4
作者:Katarzyna Bartkowska, Izabela Swiatek, Agata Aniszewska, Ewelina Jurewicz, Kris Turlejski, Anna Filipek, Rouzanna L Djavadian

Abstract

The CacyBP/SIP target S100A6 is widely present in the nervous system, and its up-regulation is associated with certain neurodegenerative diseases. Here, we examined the involvement of S100A6 protein in stress responses in mice. Using Western blotting, we observed a marked change in brainstem structures, whereby stressed mice showed approximately one-third the protein level produced in the control group. A decreased level of S100A6 protein in stressed animals was also detected in the olfactory bulb and the cerebellum and stress-related structures such as the hippocampus and the hypothalamus. Additionally, using immunohistochemistry, high levels of S100A6 expression were observed in astrocytes localized in the border zones of all brain ventricles, tanycytes of the ventro-lateral walls of the hypothalamus, including the arcuate nucleus (ARH) and low levels of this protein were in neurons of the olfactory bulb, the hippocampus, the thalamus, the cerebral cortex, the brainstem and the cerebellum. Although S100A6-expressing cells in all these brain structures did not change their phenotype in response to stress, the intensity of immunofluorescent labeling in all studied structures was lower in stressed mice than in control animals. For example, in the ARH, where extremely strong immunostaining was observed, the number of immunolabeled fibers was decreased by approximately half in the stressed group compared with the controls. Although these results are descriptive and do not give clue about functional role of S100A6 in stress, they indicate that the level of S100A6 decreases in several brain structures in response to chronic mild stress, suggesting that this protein may modify stress responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。