Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis

代谢功能障碍相关脂肪肝:炎症标志物、TLR4 和细胞因子 IL-17A/F 之间的关联及其与脂肪变性程度和纤维化风险的关系

阅读:7
作者:Sorina-Cezara Coste, Olga Hilda Orășan, Angela Cozma, Vasile Negrean, Adela-Viviana Sitar-Tăut, Gabriela Adriana Filip, Adriana Corina Hangan, Roxana Liana Lucaciu, Mihaela Iancu, Lucia Maria Procopciuc

Background

The pathogenesis of MASLD (metabolic dysfunction-associated steatotic liver disease) is driven by environmental, genetic, metabolic, immune, and inflammatory factors. IL-17 and TLR4 determine hepatic steatosis, inflammation, and finally fibrosis. Objectives: To explore the associations between the plasma levels of inflammatory markers, TLR4, and the cytokines IL17A/F, as well as their connections with the degree of hepatic steatosis and the risk of hepatic fibrosis (defined by the FIB-4 score) in MASLD patients.

Conclusions

Regarding the inflammatory markers, the PIV and the SII hold promise as biomarkers for discriminating between MASLD patients with an intermediate-high risk and those with a low risk of hepatic fibrosis. Our findings underscore the role of IL-17A and its potential relationship with inflammatory markers in MASLD pathogenesis and the progression to hepatic fibrosis.

Methods

The study cohort included 80 patients diagnosed with MASLD. The IL-17A/F and TLR4 serum concentrations were determined using the ELISA method.

Results

We found a significant difference in the CAR levels (C-reactive protein to albumin ratio) when comparing MASLD patients with severe steatosis to those with mild/moderate steatosis (Student's t test, t (71) = 2.32, p = 0.023). The PIV (pan-immune inflammatory value) was positively correlated with the SII (systemic immune inflammation index), (r = 0.86, p < 0.0001) and the CAR (r = 0.41, p = 0.033) in MASLD patients with severe steatosis. In contrast, increased values of the LMR (lymphocyte to monocyte ratio) were significantly associated, with decreased levels of the SII (ρ = -0.38, p = 0.045). We also found a positive correlation between the CAR and the SII (r = 0.41, p = 0.028). In patients with mild/moderate steatosis, a significant positive correlation was observed between the SII and IL17A (r = 0.36, p = 0.010), the PIV and the CAR (r = 0.29, p = 0.011), the PIV and the SII (r = 0.87, p < 0.0001) and the PIV and IL17A (r = 0.3, p = 0.036). A negative correlation was observed between the LMR and the SII (r = -0.55, p < 0.0001) and the CAR and IL17F (r = -0.37, p = 0.011). Regarding the inflammatory markers, the PIV (336.4 vs. 228.63, p = 0.0107), and the SII (438.47 vs. 585.39, p = 0.0238) had significantly lower levels in patients with an intermediate-high risk of hepatic fibrosis as compared with the patients with a low risk of hepatic fibrosis. The PNI (prognostic nutritional index) (47.16 vs. 42.41, p = 0.0392) had significantly different levels in patients with the likelihood of hepatic fibrosis than those with a low risk of hepatic fibrosis. Conclusions: Regarding the inflammatory markers, the PIV and the SII hold promise as biomarkers for discriminating between MASLD patients with an intermediate-high risk and those with a low risk of hepatic fibrosis. Our findings underscore the role of IL-17A and its potential relationship with inflammatory markers in MASLD pathogenesis and the progression to hepatic fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。