Regulation of High-Affinity Iron Acquisition, Including Acquisition Mediated by the Iron Permease FtrA, Is Coordinated by AtrR, SrbA, and SreA in Aspergillus fumigatus

高亲和力铁获取的调节,包括由铁通透酶 FtrA 介导的获取,由烟曲霉中的 AtrR、SrbA 和 SreA 协调

阅读:7
作者:Annie Yap, Ricarda Volz, Sanjoy Paul, W Scott Moye-Rowley, Hubertus Haas

Abstract

Iron acquisition is crucial for virulence of the human pathogen Aspergillus fumigatus. Previous studies indicated that this mold regulates iron uptake via both siderophores and reductive iron assimilation by the GATA factor SreA and the SREBP regulator SrbA. Here, characterization of loss of function as well as hyperactive alleles revealed that transcriptional activation of iron uptake depends additionally on the Zn2Cys6 regulator AtrR, most likely via cooperation with SrbA. Mutational analysis of the promoter of the iron permease-encoding ftrA gene identified a 210-bp sequence, which is both essential and sufficient to impart iron regulation. Further studies located functional sequences, densely packed within 75 bp, that largely resemble binding motifs for SrbA, SreA, and AtrR. The latter, confirmed by chromatin immunoprecipitation (ChIP) analysis, is the first one not fully matching the 5'-CGGN12CCG-3' consensus sequence. The results presented here emphasize for the first time the direct involvement of SrbA, AtrR, and SreA in iron regulation. The essential role of both AtrR and SrbA in activation of iron acquisition underlines the coordination of iron homeostasis with biosynthesis of ergosterol and heme as well as adaptation to hypoxia. The rationale is most likely the iron dependence of these pathways along with the enzymatic link of biosynthesis of ergosterol and siderophores. IMPORTANCE Aspergillus fumigatus is the most common filamentous fungal pathogen infecting humans. Iron acquisition via siderophores has previously been shown to be essential for virulence of this mold species. Here, we demonstrate that AtrR, a transcription factor previously shown to control ergosterol biosynthesis, azole resistance, and adaptation to hypoxia, is essential for activation of iron acquisition, including siderophore biosynthesis and uptake. Dissection of an iron-regulated promoter identified binding motifs for AtrR and the two previously identified regulators of iron acquisition, SrbA and SreA. Altogether, this study identified a new regulator required for maintenance of iron homeostasis, revealed insights into promoter architecture for iron regulation, and emphasized the coordinated regulation of iron homeostasis ergosterol biosynthesis and adaptation to hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。