An oxygen-sensitive mechanism in regulation of epithelial sodium channel

上皮钠通道调节的氧敏感机制

阅读:6
作者:Su Wang, Stephen Publicover, Yuchun Gu

Abstract

Epithelial sodium channels (ENaCs) are of immense importance, controlling Na(+) transport across epithelia and thus playing a central role in all aspects of fluid clearance as well as numerous other functions. Regulation of these channels is critical. Here, we show that haem, a regulator of Na(+) transport, directly influences ENaC activity, decreasing channel-open probability (but not unitary conductance) in inside-out patches (but not outside-out). Conversely, exposure to the protein in the presence of NADPH and at normoxic O(2) tension (requirements for activity of hemeoxygenase) increases channel activity. CO, a product of hemeoxygenase activity, activated ENaC in a manner similar to that of haem plus NADPH. However, under hypoxic conditions, inhibition of ENaC by haem occurred even in the presence of NADPH. These data demonstrate a potent, O(2)-sensitive mechanism for regulation of ENaC, in which hemeoxygenase acts as the O(2) sensor, its substrate and product inhibiting and stimulating (respectively) the activity of ENaC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。