Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma

脂质代谢相关的长链非编码RNA RP11-817I4.1促进肝细胞癌中的脂肪酸合成和肿瘤进展

阅读:4
作者:Ren-Yong Wang, Jia-Ling Yang, Ning Xu, Jia Xu, Shao-Hua Yang, Dao-Ming Liang, Jin-Ze Li, Hong Zhu

Aim

To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs (LMR-lncRNAs) and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.

Background

Hepatocellular carcinoma (HCC) is one of the most common types of tumors. The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.

Conclusion

LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients, and the discovery of a novel LMR-lncRNAs, RP11-817I4.1, revealed its role in promoting lipid accumulation, thereby accelerating the onset and progression of HCC.

Methods

Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs. Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs. Nile red staining was employed to observe intracellular lipid levels. The interaction between RP11-817I4.1, miR-3120-3p, and ATP citrate lyase (ACLY) was validated through the performance of dual-luciferase reporter gene and RIP assays.

Results

Three LMR-lncRNAs (negative regulator of antiviral response, RNA transmembrane and coiled-coil domain family 1 antisense RNA 1, and RP11-817I4.1) were identified as predictive markers for HCC patients and were utilized in the construction of risk models. Additionally, proliferation, migration, and invasion were reduced by RP11-817I4.1 knockdown. An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。