Hypoxia-inducible factor 1a induces phenotype switch of human aortic vascular smooth muscle cell through PI3K/AKT/AEG-1 signaling

缺氧诱导因子1a通过PI3K/AKT/AEG-1信号诱导人主动脉血管平滑肌细胞表型转换

阅读:5
作者:Kai Liu, Changcun Fang, Yuwen Shen, Zhengqin Liu, Min Zhang, Bingbing Ma, Xinyan Pang

Abstract

To date, hypoxia-inducible factor 1a (HIF-1a) and astrocyte elevated gene-1 (AEG-1) have been involved in the proliferation, migration and morphological changes of vascular smooth muscle cells. However, the potential relationship of HIF-1a-AEG-1 pathway in human aortic smooth muscle cell (HASMC) has not been reported. In the present study, in-vitro assays were utilized to explore the potential impact of HIF-1a-AEG-1 signaling on HASMC phenotype. Here, we found that HIF-1a expression was up-regulated in the media of thoracic aortic dissection tissues as compared with normal aortic tissues, and was associated with increased apoptotic SMCs and decreased AEG-1 expression. Mechanically, hypoxia promoted the expression of HIF-1a by PI3K-AKT pathway in HASMCs; HIF-1a further suppressed the expressions of AEG-1, a-SMA and SM22a, and promoted osteopontin (OPN) expression. Functionally, HIF-1a inhibited the proliferation and migration of HASMCs. However, si-HIF-1a or Akt inhibitor abrogated HIF-1a-mediated related expressions and biological effects above. In conclusion, HIF-1a induces HASMC phenotype switch, and closely related to PI3K/AKT and AEG-1 signaling, which may provide new avenues for the prevention and treatment of aortic dissection diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。