A peptide derived from apoptin inhibits glioma growth

源自凋亡素的肽可抑制神经胶质瘤的生长

阅读:5
作者:Liqiu Zhang, Hengyu Zhao, Zhongqi Cui, Yueshan Lv, Wenjia Zhang, Xiaoyu Ma, Jianan Zhang, Banghao Sun, Danyang Zhou, Lijie Yuan

Abstract

Glioblastoma (GBM) is associated with poor prognosis due to its resistance to surgery, irradiation, and conventional chemotherapy. Thus, efficient therapeutic approaches for the treatment of GBM are urgently needed. HSP70 is an antiapoptotic protein that participates in the inhibition of both mitochondrial and membrane receptor apoptosis pathways and is highly expressed in glioma tissues. Here, we investigated a derivative of apoptin; specifically, a chicken anemia viral protein with selective toxicity toward cancer cells that can inhibit hyperactive molecules, including HSP70. Our earlier studies demonstrated that apoptin directly binds to the promoter of HSP70 and inhibits HSP70 transcription, which contributes to HSP70 downregulation. This study provides the first demonstration of the therapeutic potential of an apoptin-derived peptide for the treatment of GBM by identifying the minimal region of the apoptin domain required for interaction with the heat-shock element (HSE). This apoptin-derived peptide (ADP) inhibits glioma cell proliferation and tumor growth as well as exhibits an increased ability to promote apoptosis in GBM cells compared with rapamycin and temozolomide. ADP treatment inhibited xenograft tumor growth and increased the overall health and survival of nude mice implanted with GBM cells. These effects were measured in tumors obtained from cell lines and were observed in both intracranial and subcutaneous xenografts. In conclusion, we provide the first demonstration that ADP has therapeutic potential for the treatment of human GBM. Specifically, this study suggests that ADP is a potent candidate for drug development based on its favorable toxicity and pharmacokinetic profiles as well as its time- and cost-saving benefits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。