Inhibition of Eukaryotic Initiation Factor 2 Alpha Phosphatase Reduces Tissue Damage and Improves Learning and Memory after Experimental Traumatic Brain Injury

抑制真核起始因子 2 α 磷酸酶可减少实验性创伤性脑损伤后的组织损伤并改善学习和记忆

阅读:16
作者:Pramod K Dash, Michael J Hylin, Kimberly N Hood, Sara A Orsi, Jing Zhao, John B Redell, Andrey S Tsvetkov, Anthony N Moore

Abstract

Patients who survive traumatic brain injury (TBI) are often faced with persistent memory deficits. The hippocampus, a structure critical for learning and memory, is vulnerable to TBI and its dysfunction has been linked to memory impairments. Protein kinase RNA-like ER kinase regulates protein synthesis (by phosphorylation of eukaryotic initiation factor 2 alpha [eIF2α]) in response to endoplasmic reticulum (ER) stressors, such as increases in calcium levels, oxidative damage, and energy/glucose depletion, all of which have been implicated in TBI pathophysiology. Exposure of cells to guanabenz has been shown to increase eIF2α phosphorylation and reduce ER stress. Using a rodent model of TBI, we present experimental results that indicate that postinjury administration of 5.0 mg/kg of guanabenz reduced cortical contusion volume and decreased hippocampal cell damage. Moreover, guanabenz treatment attenuated TBI-associated motor, vestibulomotor, recognition memory, and spatial learning and memory dysfunction. Interestingly, when the initiation of treatment was delayed by 24 h, or the dose reduced to 0.5 mg/kg, some of these beneficial effects were still observed. Taken together, these findings further support the involvement of ER stress signaling in TBI pathophysiology and indicate that guanabenz may have translational utility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。