Development of a vitrification method for preserving human myoblast cell sheets for myocardial regeneration therapy

开发用于心肌再生治疗的人类成肌细胞片层玻璃化保存方法

阅读:9
作者:Hirotatsu Ohkawara, Shigeru Miyagawa, Satsuki Fukushima, Shin Yajima, Atsuhiro Saito, Hiroshi Nagashima, Yoshiki Sawa

Background

Tissue-engineered cardiac constructs have potential in the functional recovery of heart failure; however, the preservation of these constructs is crucial for the development and widespread application of this treatment. We hypothesized that tissue-engineered skeletal myoblast (SMB) constructs may be preserved by vitrification to conserve biological function and structure.

Conclusions

Overall, these results show that the vitrification method proposed here preserves the functionality and structure of scaffold-free cardiac cell-sheet constructs using human SMBs after thawing, suggesting the potential clinical application of this method in cell-sheet therapy.

Results

Scaffold-free cardiac cell-sheet constructs were prepared from SMBs and immersed in a vitrification solution containing ethylene glycol, sucrose, and carboxyl poly-L-lysine. The cell sheet was wrapped in a thin film and frozen rapidly above liquid nitrogen to achieve vitrification (vitrification group, n = 8); fresh, untreated SMB sheets (fresh group, n = 8) were used as the control. The cryopreserved SMB sheets were thawed at 2 days, 1 week, 1 month, and 3 months after cryopreservation for assessment. Thawed, cryopreserved SMB sheets were transplanted into rat hearts in a myocardial infarction nude rat model, and their effects on cardiac function were evaluated. Cell viability in the cardiac constructs of the vitrification group was comparable to that of the fresh group, independent of the period of cryopreservation (p > 0.05). The structures of the cell-sheet constructs, including cell-cell junctions such as desmosomes, extracellular matrix, and cell membranes, were maintained in the vitrification group for 3 months. The expression of cytokine genes and extracellular matrix proteins (fibronectin, collagen I, N-cadherin, and integrin α5) showed similar levels in the vitrification and fresh groups. Moreover, in an in vivo experiment, the ejection fraction was significantly improved in animals treated with the fresh or cryopreserved constructs as compared to that in the sham-treated group (p < 0.05). Conclusions: Overall, these results show that the vitrification method proposed here preserves the functionality and structure of scaffold-free cardiac cell-sheet constructs using human SMBs after thawing, suggesting the potential clinical application of this method in cell-sheet therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。