A usable model of "decathlon winner" cancer cells in triple-negative breast cancer: survival of resistant cancer cells in quiescence

三阴性乳腺癌中“十项全能冠军”癌细胞的可用模型:耐药癌细胞在静止状态下的存活

阅读:6
作者:Balraj Singh, Vanessa N Sarli, Laura J Washburn, Milan R Raythatha, Anthony Lucci

Abstract

We previously described a strategy for selecting highly adaptable rare triple-negative breast cancer (TNBC) cells based on their ability to survive a severe and prolonged metabolic challenge, e.g., a lack of glutamine. We hypothesized that metabolically adaptable (MA) cancer cells selected from the SUM149 cell line in this manner have the capacity to survive a variety of challenges that postulated "decathlon winner" cancer cells must survive to succeed in metastasis. These MA cells were resistant to glutaminase inhibitor CB-839, as predicted from their ability to proliferate without exogenous glutamine. They were also resistant to hypoxia, surviving treatment with hypoxia inducer cobalt chloride. Investigating the nature of intrinsic resistance in SUM149-MA cells, we found that 1-2 mM metformin completely inhibited the emergence of MA colonies in SUM149 cells in glutamine-free medium. These highly resistant MA cells grew into colonies upon removal of metformin, indicating that they survived in quiescence for several weeks under metformin treatment. This approach of selecting resistant cells worked equally well with additional TNBC cell lines, specifically inflammatory breast cancer cell line FC-IBC02 and mouse breast cancer cell line 4T07. In both cases, less than 1% of cells survived metformin treatment and formed colonies in glutamine-free medium. The MA cells selected in this manner were significantly more resistant to the chemotherapeutic drug doxorubicin than the parental cell lines. We conclude that our approach may be useful in developing usable models of cancer cell quiescence and therapy resistance in TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。