Influence of Microbial Metabolites on the Nonspecific Permeability of Mitochondrial Membranes under Conditions of Acidosis and Loading with Calcium and Iron Ions

微生物代谢物对酸中毒及钙、铁离子负荷条件下线粒体膜非特异性通透性的影响

阅读:8
作者:Nadezhda Fedotcheva, Andrei Olenin, Natalia Beloborodova

Abstract

Mitochondrial dysfunction is currently considered one of the main causes of multiple organ failure in chronic inflammation and sepsis. The participation of microbial metabolites in disorders of bioenergetic processes in mitochondria has been revealed, but their influence on the mitochondrial membrane permeability has not yet been studied. We tested the influence of various groups of microbial metabolites, including indolic and phenolic acids, trimethylamine-N-oxide (TMAO) and acetyl phosphate (AcP), on the nonspecific permeability of mitochondrial membranes under conditions of acidosis, imbalance of calcium ions and excess free iron, which are inherent in sepsis. Changes in the parameters of the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) and iron-activated swelling of rat liver mitochondria were evaluated. The most active metabolites were indole-3-carboxylic acid (ICA) and benzoic acid (BA), which activated MPTP opening and swelling under all conditions. AcP showed the opposite effect on the induction of MPTP opening, increasing the threshold concentration of calcium by 1.5 times, while TMAO activated swelling only under acidification. All the redox-dependent effects of metabolites were suppressed by the lipid radical scavenger butyl-hydroxytoluene (BHT), which indicates the participation of these microbial metabolites in the activation of membrane lipid peroxidation. Thus, microbial metabolites can directly affect the nonspecific permeability of mitochondrial membranes, if conditions of acidosis, an imbalance of calcium ions and an excess of free iron are created in the pathological state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。