Alpha-1-Antitrypsin Promoter Improves the Efficacy of an Adeno-Associated Virus Vector for the Treatment of Mitochondrial Neurogastrointestinal Encephalomyopathy

Alpha-1-抗胰蛋白酶启动子可提高腺相关病毒载体治疗线粒体神经胃肠脑肌病的疗效

阅读:8
作者:Raquel Cabrera-Pérez, Ferran Vila-Julià, Michio Hirano, Federico Mingozzi, Javier Torres-Torronteras, Ramon Martí

Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating disease caused by mutations in TYMP, which encodes thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction results in systemic thymidine and deoxyuridine overload, which interferes with mitochondrial DNA replication. Preclinical studies have shown that gene therapy using a lentiviral vector targeted to hematopoietic stem cells or an adeno-associated virus (AAV) vector transcriptionally targeted to liver are feasible approaches to treat MNGIE. Here, we studied the effect of various promoters (thyroxine-binding globulin [TBG], phosphoglycerate kinase [PGK], hybrid liver-specific promoter [HLP], and alpha-1-antitrypsin [AAT]) and DNA configuration (single stranded or self complementary) on expression of the TYMP transgene in the AAV8 serotype in a murine model of MNGIE. All vectors restored liver TP activity and normalized nucleoside homeostasis in mice. However, the liver-specific promoters TBG, HLP, and AAT were more effective than the constitutive PGK promoter, and the self-complementary DNA configuration did not provide any therapeutic advantage over the single-stranded configuration. Among all constructs, only AAV-AAT was effective in all mice treated at the lowest dose (5 × 1010 vector genomes/kg). As use of the AAT promoter will likely minimize the dose needed to achieve clinical efficacy as compared to the other promoters tested, we propose using the AAT promoter in the vector eventually designed for clinical use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。