Inhibition of canonical WNT/β-catenin signaling is involved in leflunomide (LEF)-mediated cytotoxic effects on renal carcinoma cells

抑制经典 WNT/β-catenin 信号与来氟米特 (LEF) 介导的对肾癌细胞的细胞毒作用有关

阅读:8
作者:Yicheng Chen, Qiaoli Huang, Hua Zhou, Yueping Wang, Xian Hu, Tao Li

Abstract

Leflunomide (LEF), an inhibitor of dihydroorotate dehydrogenase (DHODH) in pyrimidine biosynthetic pathway, is an immunomodulatory agent approved for the treatment of rheumatoid arthritis. In this study, we show that LEF significantly reduced cell proliferation of renal carcinoma cells in a concentration-dependent manner. LEF at 50 μM induced S-phase arrest and autophagy. Higher doses of LEF (>50 μM) effectively induced cell apoptosis. Modulating the concentration of LEF resulted in distinct effects on the expression of regulatory proteins associated with cell cycle, apoptosis, and autophagy. In particular, high concentrations of LEF inhibited canonical WNT signaling by promoting nucleo-cytoplasmic shuttling and proteasome-dependent degradation of β-catenin. Mechanistic studies showed that the repression of AKT activation partly accounted for LEF-mediated WNT inhibition. Gene expression microarray revealed that LEF treatment greatly inhibited the expression of FZD10 gene, a receptor mediating WNT/β-catenin activation. In vivo xenograft study in NOD/SCID mice further validated the inhibitory effects of LEF on tumor growth and Wnt/β-catenin signaling. However, LEF treatment also triggered cell autophagy and elevated the expression of WNT3a, which ameliorated its cytotoxic effects. The combination of LEF with a WNT inhibitor IWP-2 or autophagy inhibitor HCQ could yield an enhanced anti-tumor outcome. Taken together, these results identify the potential utility and pharmacological feature of LEF in the chemotherapy of renal cell carcinoma (RCC).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。