Interleukin-19 Gene-Deficient Mice Promote Liver Fibrosis via Enhanced TGF-β Signaling, and the Interleukin-19-CCL2 Axis Is Important in the Direction of Liver Fibrosis

白细胞介素-19基因缺陷小鼠通过增强TGF-β信号通路促进肝纤维化,白细胞介素-19-CCL2轴在肝纤维化进程中起重要作用

阅读:2
作者:Naoshige Ono ,Takashi Fujita ,Mariko Miki ,Kazuhiro Nishiyama ,Takeshi Izawa ,Tomoko Aoyama ,Mitsuru Kuwamura ,Hideki Fujii ,Yasu-Taka Azuma

Abstract

IL-19 is a cytokine discovered by homologous searching with IL-10 and is produced by non-immune cells, such as keratinocytes, in addition to immune cells, such as macrophages. Liver fibrosis results from the inflammation and activation of hepatic stellate cells via chronic liver injury. However, the participation of IL-19 in liver fibrosis remains to be sufficiently elucidated. Our group studied the immunological function of IL-19 in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. IL-19 gene-deficient (KO) mice and body weight-matched wild-type (WT) mice were used. A liver fibrosis mouse model was created via CCl4 administration (two times per week) for 8 weeks. In CCl4-induced liver fibrosis, serum analysis revealed that IL-19 KO mice had higher ALT levels compared to WT mice. IL-19 KO mice had worse fibrosis, as assessed by morphological evaluation of total area stained positive with Azan and Masson trichrome. In addition, the expression of α-SMA was increased in liver tissues of IL-19 KO mice compared to WT mice. Furthermore, mRNA expression levels of TGF-β and α-SMA were enhanced in IL-19 KO mice compared to WT mice. In vitro assays revealed that IL-19-high expressing RAW264.7 cells inhibited the migration of NIH3T3 cells via the inhibited expression of CCL2 in the presence of CCl4 and IL-4. These findings indicate that IL-19 plays a critical role in liver fibrosis by affecting TGF-β signaling and the migration of hepatic stellate cells during liver injury. Enhancement of the IL-19 signaling pathway is a potential treatment for liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。