Examination of PHB Depolymerases in Ralstonia eutropha: Further Elucidation of the Roles of Enzymes in PHB Homeostasis

检查真养红藻中的 PHB 解聚酶:进一步阐明酶在 PHB 稳态中的作用

阅读:6
作者:Christopher J Brigham, Esther N Reimer, Chokyun Rha, Anthony J Sinskey

Abstract

Polyhydroxyalkanoates (PHA) are biodegradable polymers that are attractive materials for use in tissue engineering and medical device manufacturing. Ralstonia eutropha is regarded as the model organism for PHA biosynthesis. We examined the effects of PHA depolymerase (PhaZ) expression on PHA homeostasis in R. eutropha strains. In order to analyze the impact of PhaZs on R. eutropha granule architecture, we performed electron microscopy on several phaZ knockout strains and the wild type strain grown under PHA production conditions. Analysis of the acquired micrographs was based on stereology: the ratio of granule area and cell area was determined, along with total granule count per full-size cell image. Cells bearing a phaZ2 knockout mutation alone or in conjunction with a phaZ1 mutation were found to have a high granule volume per cell volume and a higher granule count compared to wild type. A phaZ quadruple knockout strain appeared to have a low granule volume per cell volume and a low granule count per cell. Cells bearing a phaZ3 knockout were found to have a higher granule count than the wild type, whereas granule volume per cell volume was similar. Accordingly, we hypothesize that PhaZs have not only an impact on PHA degradation but also on the 3-dimensional granule architecture. Based on our data, PhaZ2 is postulated to affect granule density. This work increased our knowledge about PHA depolymerases in R. eutropha, including enzymes that had previously been uncharacterized.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。