Advanced glycation end-product accumulation reduces vitreous permeability

晚期糖基化终产物积累降低玻璃体通透性

阅读:7
作者:On-Tat Lee, Samuel D Good, Ricardo Lamy, Max Kudisch, Jay M Stewart

Conclusions

Advanced glycation end-product (AGE) accumulation reduces vitreous permeability when glycation is performed in ex vivo porcine vitreous. The permeability change was more pronounced for the larger solute, suggesting a lower threshold for AGE-induced permeability changes to impact the movement of proteins through the vitreous when compared with smaller molecules.

Methods

Vitreous from freshly excised porcine eyes was treated for 30 minutes with control or 0.01%, 0.1%, or 1% methylglyoxal (MG) solution. The efficacy of the glycation regimen was verified by measuring nonenzymatic cross-link density by fluorescence in the vitreous samples. Resistance to collagenase digestion as well as N(ε)-(carboxyethyl) lysine (CEL) content were also measured. The permeability coefficient for fluorescein and fluorescein isothiocyanate (FITC)-IgG diffusion through 3 mL of the vitreous samples was determined by using a custom permeability tester.

Purpose

To evaluate the effect of nonenzymatic cross-linking (glycation) upon the permeability of the vitreous to small- and large-solute diffusion.

Results

Vitreous cross-linking with MG treatment was confirmed by increased fluorescence, increased CEL concentration, and increased resistance to collagenase digestion. Vitreous glycation resulted in a statistically significant decrease in the permeability coefficient for fluorescein diffusion when either 0.1% or 1% MG solution was used (5.36 ± 5.24 × 10(-5) cm s(-1), P = 0.04; and 4.03 ± 2.1 × 10(-5) cm s(-1), P = 0.001; respectively, compared with control, 9.77 ± 5.45 × 10(-5) cm s(-1)). The permeability coefficient for diffusion of FITC-IgG between control (9.9 ± 6.37 × 10(-5) cm s(-1)) and treatment groups was statistically significant at all MG concentrations (0.01% MG: 3.95 ± 3.44 × 10(-5) cm s(-1), P = 0.003; 0.1% MG: 4.27 ± 1.32 × 10(-5) cm s(-1), P = 0.004; and 0.1% MG: 3.72 ± 2.49 × 10(-5) cm s(-1), P = 0.001). Conclusions: Advanced glycation end-product (AGE) accumulation reduces vitreous permeability when glycation is performed in ex vivo porcine vitreous. The permeability change was more pronounced for the larger solute, suggesting a lower threshold for AGE-induced permeability changes to impact the movement of proteins through the vitreous when compared with smaller molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。