Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices

棘状金突起改善神经元与微电子设备表面的粘附和电耦合

阅读:6
作者:Aviad Hai, Ada Dormann, Joseph Shappir, Shlomo Yitzchaik, Carmen Bartic, Gustaaf Borghs, J P M Langedijk, Micha E Spira

Abstract

Interfacing neurons with micro- and nano-electronic devices has been a subject of intense study over the last decade. One of the major problems in assembling efficient neuro-electronic hybrid systems is the weak electrical coupling between the components. This is mainly attributed to the fundamental property of living cells to form and maintain an extracellular cleft between the plasma membrane and any substrate to which they adhere. This cleft shunts the current generated by propagating action potentials and thus reduces the signal-to-noise ratio. Reducing the cleft thickness, and thereby increasing the seal resistance formed between the neurons and the sensing surface, is thus a challenge and could improve the electrical coupling coefficient. Using electron microscopic analysis and field potential recordings, we examined here the use of gold micro-structures that mimic dendritic spines in their shape and dimensions to improve the adhesion and electrical coupling between neurons and micro-electronic devices. We found that neurons cultured on a gold-spine matrix, functionalized by a cysteine-terminated peptide with a number of RGD repeats, readily engulf the spines, forming tight apposition. The recorded field potentials of cultured Aplysia neurons are significantly larger using gold-spine electrodes in comparison with flat electrodes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。